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Abstract. Data assimilation (DA) of remotely sensed leaf area index (LAI) can help to improve land surface model estimates

of energy, water, and carbon variables. So far, most studies have used bias-blind LAI DA approaches, i.e. without correcting

for biases between model forecasts and observations. This might hamper the performance of the DA algorithms in the case of

large biases in either observations or simulations, or both. We perform bias-blind and bias-aware DA of the Copernicus Global

Land Service LAI into the Noah-MP land surface model forced by the ERA5 reanalysis over Europe in the 2002–2019 period,5

and evaluate how the choice of bias correction affects estimates of gross primary productivity (GPP), evapotranspiration (ET),

runoff, and soil moisture.

In areas with a large LAI bias, the bias-blind LAI DA leads to a reduced bias between observed and modelled LAI, an

improved agreement of GPP, ET, and runoff estimates with independent products, but a worse agreement of soil moisture

estimates with the European Space Agency Climate Change Initiative (ESA CCI) soil moisture product. Bias-blind LAI DA10

can also lead to unrealistic shifts in soil moisture climatologies, for example when the assimilated LAI data in irrigated areas are

much higher than those simulated without any irrigation activated. Furthermore, the bias-blind LAI DA produces a pronounced

sawtooth pattern due to model drift between update steps. This model drift also propagates to short-term estimates of GPP and

ET, and to internal DA diagnostics that indicate a suboptimal DA system performance.

The bias-aware approaches based on a priori rescaling of LAI observations to the model climatology avoid the negative15

effects of the bias-blind assimilation. They retain the improvements of GPP anomalies from the bias-blind DA, but forego

improvements in the root mean square deviation (RMSD) of GPP, ET, and runoff. As an alternative to rescaling, we discuss the

implications of our results for model calibration or joint parameter and state update DA, which has the potential to combine

bias reduction with optimal DA system performance.

1 Introduction20

Vegetation plays a major role in climatic interactions between the land surface and the atmosphere. Via transpiration and

photosynthesis, it contributes to the exchange of energy, water, and carbon at the surface, and links the moisture in the deeper
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soil layers to the atmosphere (Bonan, 2019). On short timescales, these exchanges can impact precipitation and atmospheric

circulation (Betts et al., 1996; Miralles et al., 2016). On longer timescales, the net uptake of CO2 by vegetation (Friedlingstein

et al., 2022) might be decreased due to climate change, contributing to rising CO2 levels (Green et al., 2019; Walker et al.,25

2021). Land surface models (LSMs) are often used to estimate these exchange fluxes as part of Earth system models or as land

component in numerical weather prediction (NWP) systems (e.g., Balsamo et al., 2009; Lawrence et al., 2019; Skamarock

et al., 2019). An accurate description of vegetation in LSMs can therefore improve estimates of evapotranspiration (ET) in

NWP (Boussetta et al., 2013), or can be used to estimate how vegetation will develop under a changed climate (Laanaia et al.,

2016) and how this affects the land carbon sink (Tharammal et al., 2019a, b; Green et al., 2019).30

However, the dynamic simulation of vegetation in global LSMs is still in its infancy and has large uncertainties, especially

in dry climates (Fox et al., 2018; Mahmud et al., 2021). Satellite-based vegetation data assimilation (DA) can be used to

reduce the uncertainties of the vegetation-related LSM estimates. Satellite-derived leaf area index (LAI) is commonly used for

DA, because it can be derived from optical sensors fairly accurately (Fang et al., 2019) and is also available as model state

variable in several land surface models with a dynamic vegetation component. Satellite LAI has for example been assimilated35

into the Interactions between Soil Biosphere Atmosphere (ISBA) LSM (Sabater et al., 2008; Barbu et al., 2014; Fairbairn

et al., 2017; Albergel et al., 2017; Mucia et al., 2020), the Noah LSM with multiparameterisation options (Noah-MP; e.g.,

Kumar et al., 2019b, 2021; Rahman et al., 2022; Nie et al., 2022), the Community Land Model (CLM; e.g., Fox et al., 2018;

Ling et al., 2019), and the Carbon-Tiled ECMWF Scheme for Surface Exchange over Land (CTESSEL; e.g., Jarlan et al.,

2008). Alternatives are, for example, to use microwave brightness temperatures to simultaneously update soil moisture and40

LAI (Sawada and Koike, 2014; Sawada et al., 2015) or to use microwave vegetation optical depth (VOD) retrievals to update

LAI (Kumar et al., 2020, 2021).

The most commonly used methods for assimilating LAI into LSMs are based on the Kalman filter. A fundamental assumption

of these methods is that modelled LAI and observed LAI are unbiased. Yet, in reality, biases nearly always exist. This includes

biases of both model estimates and observations with respect to the unknown true value, and between the model estimates and45

observations themselves. If the observations are closer to the true value than the model estimates, a “bias-blind” DA (Dee,

2005) is able to correct the model bias to some extent, because it pulls the model closer towards the observations and, hence,

the true values. This comes at the risk of introducing unintended negative side effects. For example, it is possible that other

processes (e.g., transpiration) are only represented well for a biased model climatology. Large updates in a subset of the model

state might therefore propagate to other model components, which can negatively affect estimates of state variables and fluxes50

of these processes (De Lannoy et al., 2007b; Crow et al., 2020). Furthermore, if the model equilibrium state is far away from

the observations, the updates towards the observations might not persist for long. Instead, the model drifts back towards its

original state, leading to a sawtooth-like pattern in the resulting time series and potentially also to unrealistic water, carbon and

energy flux estimates (Dee, 2005; De Lannoy et al., 2007b). Changes in observation frequency or periodically missing data

may then also introduce spurious trends in the analysis (Dee, 2005).55

Most LAI assimilation studies so far used bias-blind approaches, i.e. they did not apply any bias correction methods to

account for existing biases between modelled LAI and observed LAI. This is often justified by the argument that the bias
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is caused by model deficiencies (e.g., Fairbairn et al., 2017; Fox et al., 2018; Albergel et al., 2020). Nonetheless, there are

indications that the presence of bias affects the performance of LAI assimilation. Albergel et al. (2017) and Albergel et al.

(2020) noticed systematic drifts towards the previous model estimate on days without observations. Kumar et al. (2019b);60

Mocko et al. (2021) also found model drifts leading to sawtooth patterns in the analysed LAI when using the Noah-MP LSM

with dynamic vegetation.

Various techniques have been used to limit the negative effects listed above. Albergel et al. (2017, 2020) and Mucia et al.

(2021) additionally assimilated surface soil moisture retrievals. This additional constraint can help to prevent negative side-

effects of the LAI DA on the model hydrology, but only in regions and periods where sufficient soil moisture observations are65

available. Kumar et al. (2019b); Mocko et al. (2021) and Rahman et al. (2022) interpolated their assimilated LAI product to

daily values to prevent issues due to different observation frequencies and to limit the drift towards the original equilibrium

state. Fox et al. (2018) adaptively inflated the model error in case of large bias between modelled LAI and the observations.

The latter two techniques force the analysis to stay close to the observations, which begs the question of whether it might be

more suitable to use a direct insertion approach or to prescribe the observed LAI instead of modelling it dynamically, as for70

example done by Huang et al. (2022).

Bias-aware data assimilation is another possible avenue to handle bias between models and observations. This includes

a priori rescaling approaches, which map the observations into the model space based on a priori estimates of model and

observation statistics (e.g., Reichle and Koster, 2004; Jarlan et al., 2008; Khaki et al., 2020), or online approaches which

adaptively estimate dynamic bias corrections (e.g., Derber and Wu, 1998; Dee, 2005; De Lannoy et al., 2007a). Only a few75

studies considered bias-aware approaches based on rescaling for LAI DA (Jarlan et al., 2008; Khaki et al., 2020). However, no

study so far directly compared bias-blind and bias-aware LAI DA.

In this article, we compare the bias-blind LAI DA with bias-aware LAI DA using two a priori rescaling techniques commonly

used for satellite DA. More specifically, we assimilate Copernicus Global Land Service (CGLS) LAI (Smets et al., 2019) into

the Noah-MP model (Niu et al., 2011) forced with the fifth-generation European Center for Medium-Range Weather Forecasts80

(ECMWF) Reanalysis (ERA5; Hersbach et al., 2020) reanalysis over Europe, and quantify the effect of bias-blind and bias-

aware DA on vegetation and surface water flux and state estimates.

A detailed description of the used model, data, and rescaling approaches can be found in section 2. Section 3 shows the im-

pacts of the bias-blind DA on the vegetation and hydrology model estimates, evaluates the results using independent reference

datasets, and compares the model simulations to in situ data from Majadas, Spain. Additionally, we provide an analysis of the85

sawtooth pattern in the bias-blind DA and of internal DA diagnostics. We discuss the implications of our results for LAI DA

design and model calibration in section 4. A summary of our main conclusions is given in section 5.
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2 Data & Methods

2.1 Land surface model

We used the Noah-MP LSM (Niu et al., 2011; Yang et al., 2011) version 4.0.1 with dynamic vegetation as implemented in the90

NASA Land Information System (LIS; Kumar et al., 2006; Peters-Lidard et al., 2007)). The Noah-MP LSM is based on the

Noah LSM, which is widely used for land surface modelling and DA on a regional to global scale (e.g., Rodell et al., 2004;

Kumar et al., 2014, 2019a; Maertens et al., 2021). Noah-MP includes a multitude of optional improvements for snow, water,

and vegetation modelling. It has already been used to update LAI using optical satellite imagery (Kumar et al., 2019b; Erlingis

et al., 2021; Rahman et al., 2022) and microwave vegetation optical depth (Kumar et al., 2020, 2021).95

The dynamic vegetation model of Noah-MP is based on the vegetation model in the Biosphere–Atmosphere Transfer Scheme

(BATS) model (Dickinson et al., 1998). In this model, gross primary production (GPP) is allocated to the four vegetation carbon

pools (leaves, non-woody stems, wood, and fine roots) in each simulation step. LAI is calculated from leaf carbon mass by

multiplying with a vegetation type dependent specific leaf area. It can feed back to other model state variables and fluxes via

its effect on photosynthesis, evapotranspiration (ET), precipitation interception, and runoff. Changes in LAI can therefore also100

induce changes in the model hydrology.

Maps of soil texture and land cover, and multiple parameters based on these, are required as input to the model and were

taken from the NCCS Dataportal (https://portal.nccs.nasa.gov/lisdata_pub/data/PARAMETERS/; Tian et al., 2008). We used

the STATSGO-FAO (State Soil Geography - Food Agricultural Organisation) soil texture map produced by the National Center

for Atmospheric Research (NCAR). For vegetation, we used the IGBP-NCEP (International Geosphere-Biosphere Programme105

- National Centers for Environmental Prediction) land cover map based on Friedl et al. (2002). This map classifies some pixels

in France, Spain, Ireland and Germany as evergreen broadleaf forests, which the model interprets as tropical rainforests. We

therefore replaced these pixels with the land cover class in the University of Maryland (UMD) land cover map (Hansen et al.,

2000).

As forcing, Noah-MP requires the lowest level atmospheric model (about 10 m above ground level) air temperature, wind110

speed, specific humidity and pressure, the downwelling fluxes of shortwave and longwave radiations, as well as precipitation

(partitioned into solid and liquid phases). We used data from ERA5, the latest ECMWF reanalysis, for this purpose. The initial

model state was obtained from a 30-year deterministic spinup run, cycling 3 times with the forcing data from 2000 to 2010,

followed by 2 years of ensemble spinup from 2000 to 2002.

The model domain in this study covers Europe, as well as parts of Northern Africa and the Middle East on a regular grid115

at a 0.25° resolution (ranging from 29.875◦N, −11.375◦E to 71.625◦N, 40.125◦E). It includes a wide range of climates and

vegetation types, from tundra and boreal forests in Scandinavia to the Sahara Desert. We performed the model simulations

from 2002 through 2019, using a 15-minute simulation time step and outputting daily averages centred at 0:00 UTC.
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2.2 LAI observations

We assimilated the Copernicus Global Land Service (CGLS) satellite LAI product derived from Project for On-Board Auton-120

omy - Vegetation (PROBA-V) and Satellite Pour l’Observation de la Terre - Vegetation (SPOT-VGT) (Verger et al., 2014).

This product has been used for LAI DA before, e.g. by Barbu et al. (2014), Albergel et al. (2017), and Mucia et al. (2020).

The 1 km resolution CGLS LAI product is provided as 10-daily images composed from an adaptive window of 15 to 60 days,

depending on the availability of valid measurements (Smets et al., 2019). We masked out gap-filled values and upscaled the

data to 0.25◦ resolution by averaging over all observations within one model grid cell. In contrast to Kumar et al. (2019b), we125

did not interpolate the LAI to daily values, but we assimilated the aggregated data every 10 days at 0:00 UTC, where and when

they are available.

2.3 Data assimilation

We used a one-dimensional ensemble Kalman Filter (EnKF; Evensen, 2003) for assimilating the CGLS LAI observations into

the Noah-MP LSM. The EnKF is a two-step procedure. First, the model simulates the land surface state xf (t) at the next assim-130

ilation time step (forecast). Then, the model state is updated to agree better with the observations y(t), resulting in the analysis

xa(t). The magnitude of the update (increment) depends on the innovations (observation minus forecast) and the relative sizes

of the forecast and observation error variances. In a properly configured DA system, the normalised innovations (innovations

divided by total error standard deviation) should be temporally uncorrelated and follow a standard normal distribution, i.e., the

innovation sequence should be a white noise sequence with zero mean and unit standard deviation (Desroziers et al., 2005).135

In the EnKF, the forecast error is estimated based on an ensemble of model simulations. We used 24 ensemble members, one

of which was driven by the original forcing data, while the others were driven by perturbed radiation and precipitation forcing

data. Additionally, we applied normally distributed perturbations to the model LAI state variable with a mean of zero and a

standard deviation of 0.01 m2m−2 every 3 hours for the 23 perturbed ensemble members. The unperturbed ensemble member

was used to correct for perturbation biases due to nonlinear processes using the method described by Ryu et al. (2009). All140

of the perturbation specifications and the observation error standard deviation of 0.05 m2m−2 were set following Kumar et al.

(2019b).

To remove systematic differences between the modelled and observed LAI, we implemented two a priori rescaling methods:

climatological cumulative distribution function (CDF) matching and a seasonal rescaling of the first and second moments.

CDF-matching is commonly used for soil moisture DA without distinguishing the various seasons (e.g., Reichle and Koster,145

2004; Drusch et al., 2005; Draper et al., 2012; Parrens et al., 2014; Barbu et al., 2014). It attempts to correct the biases in all

statistical moments by non-linearly transforming the observation data such that the empirical CDF of the rescaled LAI data

matches the empirical CDF of the modelled data. To estimate the empirical CDFs for each grid cell individually in a robust way,

we opted to bin the data between the 2nd and 98th percentile. We then estimated the CDF by linearly interpolating the percentile

values between the bin edges. For values outside the [2, 98] interval, the lines for the first and last bin are extrapolated to 0150

and 100, respectively. The resulting curve is discretised into 100 equally spaced bins over the full data range for use in the
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numerical rescaling procedure. When using the CDF-matching for rescaling, the observation error standard deviations are also

rescaled for each grid cell individually by multiplying with the ratio of the modelled and observed LAI standard deviations.

The seasonal rescaling is an adaption of the additive seasonal mean correction scheme commonly used for brightness tem-

perature DA (De Lannoy and Reichle, 2016; Lievens et al., 2017; Girotto et al., 2019; Bechtold et al., 2020). Similar to LAI,155

brightness temperatures also have a strong seasonal component. The additive rescaling only corrects biases in the first moment

(mean). This is valid if the difference in anomaly variance between the model and observations is related to different error

levels, i.e., the signal variances are similar (Yilmaz and Crow, 2013). In our case, differences in anomaly variance are strongly

driven by differences in the dynamic range of observations and model estimates. We assume that the differences in the dy-

namic range also result in differences in error levels, and therefore additionally corrected for the standard deviation of model160

and observation.

For the seasonal rescaling, we calculated the rescaled observation values LAI ′o at each time t via

LAI ′o(t) = µm(doy(t)) +
σm

σo
· (LAIo(t)−µo(doy(t))),

with µ⋆(doy(t)) the mean modelled (m) or observed (o) LAI value for the given day of year, and σ⋆ the standard deviation

of the modelled or observed LAI time series at individual grid cells. The latter is mainly indicative of the magnitude of the165

seasonal variations. The mean seasonal cycle of modelled and observed LAI was estimated through a three-step procedure as

implemented in the python package pytesmo (Paulik et al., 2022), i.e. (i) apply a smoothing with a 5-day moving window (ii)

average values over days of year across multiple years (doy), and (iii) smooth the obtained seasonal cycle using a window of 31

days. When using the seasonal rescaling we also rescale the observation error standard deviation for each grid cell individually

by multiplying with σm/σo.170

We performed four model runs in total, one open loop run (OL) without any data assimilation (but applying the same

perturbations), and one bias-blind and two bias-aware LAI DA runs:

– no bias correction (bias-blind)

– CDF matching for bias correction (CDF-matched)

– seasonal bias correction (seasonally scaled)175

2.4 Evaluation metrics

To evaluate the performance of the OL and DA simulations, we calculated the root mean square deviation (RMSD), linear

correlation (R) and linear anomaly correlation (Ranom) with independent reference datasets.

RMSD is a common measure for the overall disagreement between two datasets. It consists of a bias component due to bias

in the first and second moments (mean and variance bias), and a correlation component due to disagreement of the temporal180

patterns (Gruber et al., 2020). When applied to time series with a strong seasonal cycle, as is the case for most variables we

evaluate, it is dominated by mean bias and bias in the representation of the seasonal cycle. It is therefore mainly indicative of

systematic disagreement between modelled and reference data.
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Linear correlation R is not affected by mean or variance bias, but in the case of strong seasonal cycle, it is also dominated

by bias in the representation of the seasonal cycle. It therefore quantifies how well the shapes of the seasonal cycles (e.g., peak185

location, phase shift) of two datasets match.

For assessing the agreement in the intra- and inter-annual temporal variations, we used linear anomaly correlation (Ranom).

The anomalies are calculated by subtracting the long-term mean seasonal cycle for the 2003–2019 period from the original data

for each grid cell. The mean seasonal cycle is calculated the same way as the seasonal cycle used for the seasonal observation

rescaling (see subsection 2.3).190

To make the metric improvements comparable over different variables and metrics we calculated the normalised information

contributions (NIC; Kumar et al., 2009, 2014) for the three metrics:

NIC RMSD =
RMSDOL −RMSDDA

RMSDOL

NIC R =
RDA −ROL

1−ROL

NIC Ranom =
Ranom,DA −Ranom,OL

1−Ranom,OL
.195

Positive NIC values indicate an improvement compared to the OL run (up to a maximum of 1), negative NIC values indicate a

deterioration compared to the OL run.

2.5 Reference data

We used a range of reference data for assessing the impact of the different DA methods on different simulated variables. The

vegetation and carbon cycle representation were evaluated via the gross primary productivity (GPP), whereas the hydrological200

component was evaluated via evapotranspiration (ET), soil moisture (SM), and runoff, either using in situ data or as spatially

gridded satellite-based products.

We matched all reference data to the model grid (0.25◦) by averaging (for gridded datasets) or nearest neighbour matching

(for in situ data). Where available, evaluations were performed using daily model output, otherwise we averaged the model

output to the temporal resolution of the reference product. In the bias-blind DA, some variables contained strong trends in the205

first DA year (2002), caused by the induced climatology changes. We therefore limited the evaluation to 2003–2019.

2.5.1 FluxSat GPP

FluxSat (Joiner and Yoshida, 2021) provides global daily estimates of GPP retrieved from the Moderate Resolution Imaging

Spectroradiometer (MODIS). The retrieval is based on an empirical light use efficiency model that estimates GPP via an

artificial neural network (ANN) approach. The ANN was trained using in situ estimates of GPP from eddy covariance towers210

(FLUXNET). FluxSat agrees well with independent eddy covariance tower measurements (Joiner and Yoshida, 2020), and has

been shown to outperform other GPP retrieval approaches (Joiner et al., 2018). Since the GPP estimates of FluxSat are based

on data from optical sensors (although different from the ones used in our study), they might not be fully independent of the

assimilated LAI observations, and especially correlation metrics might overestimate the DA skill improvements.
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2.5.2 SIF215

Sun-induced fluorescence (SIF) is a direct measure of photosynthetic activity and is mostly linearly correlated to GPP (Franken-

berg et al., 2011) and ET (Maes et al., 2020). It is commonly used to evaluate improvements in the representation of GPP due

to LAI data assimilation (Leroux et al., 2018; Kumar et al., 2019b; Albergel et al., 2020). We used a fused dataset from the

SCanning Imaging Absorption SpectroMeter for Atmospheric CHartographY (SCIAMACHY) and the Global Ozone Monitor-

ing Experiment-2 (GOME-2) (Wen et al., 2021), which provides monthly global SIF estimates at a 0.05◦ resolution. Hence,220

the comparison with OL and DA runs was performed on monthly averages of modelled GPP. In contrast to FluxSat GPP, SIF

is independent of the assimilated LAI observations, since it uses a different retrieval approach. Since SIF is only an indicator

for GPP, but not a direct estimate, we evaluated it only in terms of R and Ranom, but not RMSD.

2.5.3 GLEAM ET

The Global Land Evaporation Amsterdam Model v3 (GLEAM; Martens et al., 2017; Miralles et al., 2011) calculates ET225

as a combination of potential evaporation (based on the Priestley-Taylor equation), stress (based on a soil moisture model

and the assimilation of microwave-based satellite soil moisture and vegetation optical depth), and interception (based on the

Gash model). We used version 3.6b, as it provides data in our evaluation period (2003-2019) and is not relying on reanalyses

as forcing data. The GLEAM ET does not rely on optical data for dynamic inputs and is thus largely independent of the

assimilated CGLS LAI.230

2.5.4 ESA CCI soil moisture

The European Space Agency (ESA) Climate Change Initiative (CCI) soil moisture (SM) v07.1 (Dorigo et al., 2017) dataset

is a merged product combining soil moisture retrievals from a multitude of satellites. We use the COMBINED product which

includes soil moisture from passive satellites retrieved with the Land Parameter Retrieval Model (LPRM; Owe et al., 2008),

and soil saturation from active satellites retrieved with the TU Wien change detection method (Wagner et al., 1999; Naeimi235

et al., 2009).

The merging is based on a variance-weighted average, with error variances obtained from a triple collocation error charac-

terisation (Gruber et al., 2019). Recent releases also include a homogenisation of breaks that may be introduced during the

merging (Preimesberger et al., 2020). The merging process also uses soil moisture estimates from the Global Land Data As-

similation System (GLDAS; Rodell et al., 2004) as a scaling reference, and the climatology of the final product is therefore the240

climatology of GLDAS. As such, we performed comparisons to ESA CCI SM only in terms of anomaly correlations.

2.5.5 ISMN soil moisture

The International Soil Moisture Network (ISMN; Dorigo et al., 2021, 2011, 2013) provides in situ soil moisture data from over

70 soil moisture sensor networks around the globe. We calculated daily averages of in situ soil moisture data from the depths

0 cm to 10 cm (SM1) and 10 cm to 40 cm (SM2) from all networks providing station data within our modelling domain (see245
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Table A1). Only data with quality flag “good” have been used, and we discarded stations with less than 1000 days of valid

data within our evaluation period. Metrics were computed based on a nearest neighbour matching between ISMN stations and

model grid coordinates, and in case of multiple stations per model grid cell we averaged the metrics of these stations to obtain a

single value per model grid cell. Since soil moisture climatology and absolute values strongly depend on sub-grid scale factors

like slope and soil texture, we only compared the in situ values in terms of anomaly correlation Ranom.250

2.5.6 GRDC runoff

To evaluate the effects of the assimilation on modelled runoff, we used monthly river discharge station data from the Global

Runoff Data Centre (GRDC; Koblenz, Germany). The station basins were derived from the provided watershed boundaries

(GRDC, 2011).

The comparison of modelled total (surface + subsurface) runoff to station river discharge followed the approach of Koster255

et al. (2014) and Koster et al. (2018), who compared river discharge with 10-daily basin-averaged runoff. We restricted the

analysis to 271 stations in Europe with a record of more than 10 years and a basin area between 625 km2 and 100,000 km2. The

lower bound follows Kumar et al. (2014), the upper bound was increased compared to Kumar et al. (2014) and Koster et al.

(2018) in order to have more available stations in southern Europe (mainly Spain). We account for the larger area by using

monthly averages instead of the 10-daily averages that were used by Koster et al. (2018). Basins with a Pearson correlation260

of less than 0.4 with respect to the OL run were excluded, so that the evaluation was not hampered by basins that are likely

strongly affected by unmodelled processes (e.g., damming or irrigation).

2.5.7 Site data from Majadas

The ecosystem research site Majadas de Tiétar (Casals et al., 2009) is located in the center of the Iberian Peninsula at

39◦56′25′′N 5◦46′29′′W and categorised as a semi-arid savanna type ecosystem (El-Madany et al., 2018) with a canopy265

height of 8.7±1.25 m, and a fractional canopy cover is 23.0±5.3% (Bogdanovich et al., 2021). In the land cover map used in

the model, the grid cell containing the research site is classified as "savanna". The mean annual temperature at the site is about

650 mm with a large inter-annual variability. The mean LAI at the site changes strongly throughout the year between 0.55 —

2.15 m2m−2 with lowest values during summer and highest values during late spring. The soil is an Abruptic Luvisol with a

sandy upper layer (Nair et al., 2019). In the model, the grid cell containing the research site uses parameters for a loamy sand270

texture.

The research site consists of three eddy covariance towers with non-overlapping footprints climatologies and similar instru-

mental setups (El-Madany et al., 2021). For this analysis, the data of the tower with the FLUXNET ID ES-LM1 are used. A

detailed description of the instrumental setup and data processing can be found in El-Madany et al. (2018, 2021). In short, the

soil moisture data are collected with four profile probes enviroSCAN (Sentek) measuring at 10, 20, 30, 50 and 100 cm plus275

a ML3 (Delta T) sensor at 5 cm close to each profile probe. The soil moisture data were further aggregated to depth levels

representing the Noah-MP soil moisture layers for each of the 4 profiles.
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Eddy covariance data where collected at 20 Hz with a R3-50 (Gill) and a LI-7200 CO2 and H2O gas analyser (Licor Bio-

science) at 15 m above ground. Raw data were processed with EddyPro (Fratini and Mauder, 2014) to calculate fluxes of ET

and CO2 at half hourly intervals. Subsequently, u*-threshold estimation, gap-filling and flux partitioning was applied using280

REddyProc (Wutzler et al., 2018). The resulting continuous time-series of ET and GPP were aggregated together with other

meteorological parameters to hourly timestamps, from which daily averages were computed.

2.6 Evaluation of short-term DA effects

The bias between observations and forecasts leads to biased update steps. To estimate how strongly the biased updates affect

different model variables, we examined forecast differences between one day after the observation time (i.e., one day after285

the DA update) and one day before the observation time (i.e., one day before the DA update). For each pixel and month, we

calculated the median of these after-before differences over the years 2003-2019 and normalised it with the monthly standard

deviation of the variable values over the same multi-year time range (as a measure of the local within-month variation). The

normalisation facilitates a comparison of the relative effect of the update over different months and locations. The after-before

differences were computed for both the OL (without applying the DA update) and the DA simulation for multiple variables:290

when the DA after-before differences deviated from those of the OL, then the biased update did propagate to the variable in

question. The results will be presented as spatial median values across the study domain.

The biased updates can also lead to unphysical model drift back towards the model equilibrium state directly after each

DA update step. To estimate this effect, we examined forecast differences between two days after the observation time (i.e.,

two days after the DA update) and one day after the observation time, again using normalised monthly median differences.295

Since there is no DA update step in between, these after-after differences are pure model forecast differences and do not

directly contain DA update effects. In the OL, these forecast differences are a natural response to the past initial conditions and

forcings, whereas in the DA, these forecast differences are also informed by a past (possibly biased) DA update in the initial

conditions. Deviations between the DA and the OL after-after differences indicate that the short-term model forecasts after a

DA update contain physically unreasonable drift artefacts.300

3 Results

3.1 Mean impact of bias-blind DA

Figure 1 compares mean values of OL and bias-blind DA results (relative to mean OL values) for different variables, for the

months of April through October across 17 years (2002–2019). The bias-blind DA decreases growing-season LAI over large

parts of the domain or has a neutral impact. It only increases in the Alps and the Scandinavian Mountains. The regions with a305

large change in mean LAI are mostly semi-arid and include the Iberian Peninsula, Northern Africa, the Middle East, Turkey,

and Ukraine, where modelled LAI is much higher than observed LAI, and modelled LAI is therefore strongly decreased by the
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Figure 1. Relative differences between temporal mean values of OL run and bias-blind DA run for (a) LAI, (b) GPP, (c) ET, (d) SM1

(0–10 cm), (e) SM2 (10–40 cm), and (f) runoff, for the months of April through October 2002–2019. Note the different colour bar ranges.

bias-blind DA. In contrast, LAI increases in the Nile delta, because the lack of irrigation forcing limits the model’s ability to

grow vegetation.

Differences in mean GPP show similar patterns, but with a weaker impact overall, especially in Central and Eastern Europe.310

One exception is the Nile delta, where growing-season GPP decreases while LAI increases.

Relative differences in mean ET are much lower (note the different colour bar range), but with similar large-scale patterns

as for GPP. On the Iberian Peninsula, the patterns differ slightly: the largest relative differences are in the Western part, mainly

over the Duero and Tajo basins. Over Scandinavia, ET increases, except for the northernmost parts.

ET links the vegetation model to the hydrology model; consequently, the LAI assimilation also affects soil moisture and315

runoff. A reduction in LAI and hence transpiration leads to a reduction in soil moisture depletion. The effect is larger on deeper

soil moisture layers than on surface soil moisture since the deeper layers are more strongly coupled with transpiration. In

regions with large LAI biases, the relative increase in mean SM2 is about 20%. For runoff, the relative increase even reaches

100%.

3.2 Evaluation of DA impacts on GPP320

The impact of bias-blind and bias-aware LAI DA on GPP is shown in figures 2 and 3, respectively. Bias-blind LAI DA strongly

improves GPP estimates in terms of RMSD and R with FluxSat GPP and SIF (only R), over most of the domain, except in

regions where the LAI bias is very large. In these regions, R with SIF degrades almost everywhere, and GPP RMSD and R

11

https://doi.org/10.5194/egusphere-2022-1137
Preprint. Discussion started: 20 December 2022
c© Author(s) 2022. CC BY 4.0 License.



Figure 2. Maps of GPP NICs for the bias-blind DA for (a) RMSD with FluxSat, (b) R with FluxSat, (c) Ranom with FluxSat, (d) R with

SIF, and (e) Ranom with SIF.

with FluxSat degrades for some grid cells. The GPP Ranom with FluxSat improves in most areas, especially in those with large

LAI biases. Similarly, the highest improvements in Ranom with SIF are found in areas with large LAI biases, excluding the325

Iberian Peninsula.

Figure 3. Top row: Maps of NIC Ranom with FluxSat GPP for (a) the CDF-matched DA, (b) the seasonally scaled DA, and (c) box plots

of NICs for RMSD, R, and Ranom with FluxSat GPP for all three DA runs. Bottom row: Maps of NIC Ranom with SIF for (d) the CDF-

matched DA, (e) the seasonally scaled DA, and (f) box plots of NICs for R and Ranom with SIF for all three DA runs. The upper limit of the

box plots showing NIC R for the bias-blind DA (around 0.8 for FluxSat, 0.7 for SIF) has been cut here to facilitate a better comparison with

the bias-aware runs.
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In the scaled LAI DA runs, the improvements in Ranom are similar, but the improvements in RMSD and R are lower,

as summarised in Figure 3c and f. The CDF-matched DA improves GPP Ranom with FluxSat over most regions, but not as

strongly as the bias-blind DA (Figure 3a). The seasonally scaled DA has largest improvements in regions with large LAI bias,

where it outperforms the CDF-matched DA, and has a low impact over the rest of the domain (Figure 3b). For SIF, the patterns330

in NIC Ranom are similar for all three runs (Figure 3d-e).

Figure 4. Mean seasonal cycles of (a) GPP and SIF, and (b) LAI, averaged over all model grid cells south of 42
◦

where the relative LAI

difference is lower than -30% (see Figure 1a). SIF and "scaled OL" have been rescaled to have the same maximum as "bias-blind DA" to

ease the comparison of the shapes of the curves.

The decrease in correlation with SIF in the regions with large bias indicate that the agreement in the seasonal cycles of SIF

and GPP deteriorate. We therefore examined the seasonal cycle of model GPP and reference datasets for the high-bias regions

in the southern part of the domain. Figure 4 shows the mean seasonal cycles of GPP, SIF, and LAI, averaged over all model

grid cells with large positive LAI bias with respect to the observations in the southern part of the modelling domain.335

The OL climatology has a higher and sharper peak than the reference FluxSat or SIF data. The bias-blind DA improves

the GPP magnitude in spring to be in line with FluxSat GPP, and leads to a sharper spring peak in the seasonal cycle of GPP

than in the OL (orange line vs. dashed blue line in Figure 4). The low summer-fall tail of the GPP peak in the bias-blind DA

climatology is considerably lower than that of the FluxSat or SIF reference datasets.

The steeper seasonal cycle of GPP for the bias-blind DA experiment is induced by a similar change in the seasonal cycle of340

LAI. This is partly caused by the earlier decrease of LAI in the observations than in the model, but also by the change in model

drift towards the equilibrium state throughout the season. In spring, the model drifts more strongly towards the OL value, as

indicated by the much more pronounced sawtooth pattern (Figure 9), and the bias-blind DA does not manage to keep the LAI

close to the observations. As a consequence, the spring LAI peak in the bias-blind DA is sharper than in both the OL and the

observations (Figure 4b).345

3.3 Evaluation of DA impact on model hydrology

The impact of bias-blind and bias-aware LAI DA on hydrological ET and runoff fluxes is presented in Figures 5 and 6,

respectively.
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Figure 5. Top row: Maps of ET NICs for the bias-blind DA for (a) RMSD with GLEAM, (b) R with GLEAM, and (c) Ranom. Bottom row:

Maps of runoff NICs for the bias-blind DA for (d) RMSD with GRDC, (e) R with GRDC, and (f) Ranom with GRDC. Note the different

colour bar ranges, especially compared to Figure 2

.

Figure 6. Box plots of RMSD, R, and Ranom for all three DA runs with (a) GLEAM ET and (b) GRDC runoff.

The ET shows mixed results in terms of RMSD, R, and Ranom with GLEAM ET (Figure 5a-c). The bias-blind DA improves

RMSD, R, and Ranom over most of Turkey and the eastern Iberian Peninsula, but degrades over the western Iberian Peninsula350

and eastern Turkey. In central and eastern Europe, RMSD improves over most agricultural regions, but R mostly degrades over

these regions. In northern Europe, both RMSD and R degrade compared to the OL run. The runoff estimates mainly improve

in terms of RMSD, R, and Ranom with GRDC station data, especially in Spain and central Europe, but there is a negative

impact in the Alps and Scandinavia (Figure 5c-e). The rescaling techniques decrease both positive and negative DA impact on

ET and runoff, resulting in very low NICs (Figure 6a-b).355

Finally, the DA results are evaluated in terms of surface (0-10 cm) and deeper (10-40 cm) soil moisture against in situ data

and the ESA CCI SM in Figure 7. Because of the sparse spatial coverage, the evaluation with ISMN lacks a clear spatial pattern.

The median Ranom is slightly positive for SM1 and SM2 for the bias-blind LAI DA, whereas the CDF-matched DA tends to
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Figure 7. Top row: Maps of NIC Ranom with ISMN for the bias-blind DA for (a) SM1 (0-10 cm) Ranom and (b) SM2 (10-40 cm) Ranom,

and (c) box plots of NIC Ranom with ISMN for SM1 and SM2 and all three DA runs. Bottom row: (d) Map of NIC Ranom with ESA CCI

SM for the bias-blind DA and (e) box plots of NIC Ranom with ESA CCI SM for all three DA runs. Note the different color bar range

compared to Figure 2 and Figure 5.

decrease Ranom, but with a lower impact than in the bias-blind case (Figure 7c). The seasonally scaled LAI DA has only little

impact on SM1 and SM2.360

The comparison with the satellite-based ESA CCI SM presents a spatially more complete picture of Ranom decrease in

regions with large LAI bias (Figure 7d). Ranom also decreases over several mountain ranges and in Scandinavia, but increases

over agricultural areas in central Europe. The median NIC (Figure 7e) is small for all experiments, with lower NIC spread for

the rescaled DA runs.

3.4 Example I: Majadas site365

To interpret the strong relative differences found in the previous section, we confront time series of multiple model variables

with in situ data for the Majadas site in Figure 8. We chose the years 2015 through 2017 as example, because of (1) the

availability of in situ data, and (2) considerable interannual variability in OL and observed LAI.

The OL and CGLS LAI show some similar features in their temporal patterns, but timing and magnitude disagree. Both

show peaks in late spring or summer and reach their minimum in early autumn, followed by a small increase (Figure 8a).370

They also agree that the peak in spring/summer 2016 is the highest within these 3 years. However, the CGLS LAI reaches

its maximum already start of May, and then rapidly decreases, while the OL reaches its maximum later, and decreases more

slowly. Additionally, the OL has a higher overall LAI, and a lower interannual variation in maximum peak than the CGLS LAI.

The magnitude of the spring maxima and the summer minima also match the observed maximum and minimum value better

(2.15 m2m−2 and 0.55 m2m−2, lower and upper thick grey line in Figure 8a, respectively). The large differences in summer375

lead to pronounced sawtooth patterns in the bias-blind DA results, showing that the model has a strong drift back towards the
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Figure 8. Time series of OL (black) and bias-blind DA (blue dashed) results for (a) LAI, (b) GPP, (c) transpiration, (d) ET, (e) SM1 (0-10cm),

(f) SM2 (10-40cm), (g) SM3 (40-100 cm), and (h) total runoff (surface + subsurface) for the model grid cell containing the Majadas site

(39.875◦, -5.875◦). Panel (a) also shows the assimilated LAI observations (blue dots) and the minimum and maximum observed LAI at the

site (grey lines). For the other panels, in situ data from the Majadas site are also shown (grey lines), if available, and the NICs for R and

Ranom (calculated based on the full period of data availability) are indicated in the panels.
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equilibrium state after each DA update. The large differences in summer lead to pronounced sawtooth patterns in the bias-blind

DA results, showing that the model has a strong drift back towards the equilibrium state after each DA update.

The decrease of summer LAI in the DA also induces a decrease of summer GPP (Figure 8b). This increases R with the in

situ flux tower measurements, but slightly decreases Ranom. A better agreement can be seen in spring 2015, where observed380

and analysed GPP decline faster than the OL, and in spring 2017, where the OL GPP increases until mid May, while DA and

observations stay at the same level as in April. The differences in overall magnitude between the in situ data and the model

might be caused by representativeness errors, for example, differences in the assumed canopy cover for the savanna land cover

class in the model and the canopy cover at the Majadas site.

Transpiration strongly decreases in summer as a consequence of the lower LAI (Figure 8c), which leads to a lower ET385

(Figure 8d). For the latter, correlation with the in situ data decreases, in agreement with the decreased correlation with GLEAM

ET in the western Iberian Peninsula seen in Figure 5a, while the anomaly correlation slightly increases.

Soil moisture also increases, with a larger effect in the deeper layers (Figure 8e-g). The first layer (0-10 cm) is only slightly

affected, but the deeper layers (layer 2 = 10-40 cm, layer 3 = 40-100 cm, layer 4 100-200 cm (not shown)) are much wetter

in summer and autumn, caused by a slower drying rate. These large changes are hard to compare across scales, since the soil390

moisture climatology depends strongly on local factors like soil texture or topography (Dong and Ochsner, 2018).

The changes in the model LAI also affect surface and subsurface runoff (Figure 8h). The main difference in the example

grid cell is an increased subsurface runoff for the analysis in winter 2016 and 2017.

Figure 9. Time series of (a) LAI and (b) SM2 (10-40 cm) for all DA runs for the Majadas grid cell. Panel (a) includes the (potentially

rescaled) observations that were assimilated in each run (coloured dots, dot colours correspond to line colours).

Figure 9 shows that the two rescaling techniques studied in this paper reduce the difference between OL and analysis LAI.

In the CDF-matched DA, winter LAI is higher than the OL, while in autumn LAI drops faster than in the OL. This leads to395
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differences in layer 2 soil moisture in autumn, although they are not as strong as in the bias-blind DA. The seasonally scaled

DA follows the OL more closely. The rescaled runs still contain the sawtooth pattern that was present in Figure 8a, but often

with a less steep drift between updates, and with seasonally varying directions. Especially the seasonal rescaling performs well

at suppressing the sawtooth pattern.

3.5 Example II: Nile delta400

Figure 10. Time series of (a) LAI, (b) SM2 (10-40 cm), and (c) GPP for the OL and the bias-blind DA for a model grid cell in the Nile delta

(31.125◦,30.875◦).

As another example we examined the Nile delta, where observed LAI strongly exceeds OL LAI, but summer GPP strongly

decreases compared to the OL (see Figure 1). The low vegetation in the OL is caused by a lack of irrigation in the model, which

results in water limitations for vegetation growth. Figure 10a shows that the bias-blind DA strongly increases LAI to follow

the observations more closely However, it also strongly decreases SM2 (Figure 10b), such that the wettest conditions in the

bias-blind DA are still drier than the driest conditions in the OL. As a consequence, SM2 falls below the model wilting point405

in summer, and the model disables photosynthesis due to water stress (Figure 10c). This decouples analysed LAI and GPP in

summer, and explains the decrease in April to October GPP seen in Figure 1. Instead of correcting the root cause for the LAI

underestimation, the DA worsens the problem here.

3.6 Evaluation of short-term DA effects

To assess the degree of propagation of the LAI sawtooth pattern to flux estimates, we examined differences in the magnitude410

of LAI, GPP and ET between one day after the DA update step (not applied for the OL run) and one day before the DA update

step (after-before), and two days after the DA update step and one day after the DA update step, (after-after, Figure 11).
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Figure 11. Normalised monthly median day-to-day forecast differences for (a) LAI, (b) GPP, and (c) ET. The differences are computed as

the forecast value at 1-day after DA (not applied for OL) minus that of 1-day before DA (after-before, solid) and 2-day after DA minus 1-day

after DA (after-after, dashed) for the OL (black), the bias-blind DA (blue), the CDF-matched DA (orange) and the seasonally scaled DA

(green). The median was calculated from all grid cells south of 42◦N at which the relative LAI difference between OL and bias blind DA

(see Figure 1) is below -30%. For each grid cell and month, the median was normalised with the monthly standard deviation of the variable

for this grid cell. The graph shows the median results across 17 years (2003-2019).

The seasonal cycle of the differences in the OL reflects the derivative of the seasonal cycle of the simulated variables (and

is evidently very similar for after-before and after-after samples). The differences peak at the inflexion points of LAI and GPP

in March and July, and cross the zero line in May and December, when LAI and GPP reach their maximum and minimum,415

respectively (Figure 11a-b, also compare Figure 4 for LAI and GPP seasonal cycle). For ET, the seasonal cycle of the difference

is shifted compared to LAI and GPP, but has otherwise similar features (Figure 11c).

The bias-blind DA significantly impacts the after-before and after-after differences. As a consequence of the strongly biased

LAI updates that always pull model LAI down, the after-before differences are strongly negative in summer. This is most

pronounced for LAI, where the differences reach almost 60% of the monthly LAI standard deviation, but also for GPP, the420

differences reach up to 40% of the monthly GPP standard deviation. For ET, the differences are lower and only reach up to

15%. In contrast, the after-after differences are positive throughout the year for LAI and GPP. This means that even in late

summer and autumn, when LAI and GPP should have a decreasing trend, LAI and GPP in the bias-blind DA have an upwards

drift after each DA update. For ET, the effect is lower, but the after-after differences in summer are still higher than in the OL

run.425

The OL and the seasonally scaled DA run have similar seasonal cycles for normalised after-before and after-after differences.

This indicates that with the seasonal scaling, the DA update does not introduce a bias into the flux estimates. The CDF-matched

DA differences are also close to the OL, but they cross the zero line earlier and are lower throughout summer, in agreement

with the earlier peak and more pronounced sawtooth pattern compared to the seasonal rescaling seen in Figure 9a.
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Figure 12. Spatial distributions of the temporal (a) mean, (b) standard deviation, and (c) autocorrelation of the innovations, across all model

grid cells. (a-b) Values for means and standard deviations outside the plot range of the histograms have been added to the first and last bin,

respectively. (c) The autocorrelation is computed for multiple lags of 10 days.

3.7 DA diagnostics430

Figure 12 shows distributions of innovation statistics across the modelling domain and show that the innovation sequence is

not standard normal for the bias-blind DA. As a consequence of the higher LAI in the model, the normalised innovation mean

is strongly negative (Figure 12a), and the absolute values of the innovations are large (Figure 12b). The autocorrelation is also

high (Figure 12c) because subsequent updates point in the same direction.

The rescaling improves the internal diagnostics of the DA system. Although there is still a sawtooth pattern (Figure 9),435

the assumption of zero mean innovations is met and rescaling helps to reduce the innovation variance (Figure 12b) and the

autocorrelation (Figure 12c) compared to the bias-blind DA run.

4 Discussion

4.1 General impacts of bias-blind and bias-aware DA

Our analysis shows that large biases between Noah-MP modelled LAI and CGLS LAI exist. This includes bias in the length440

of the growing season, which might be caused by processes not included in the model (e.g. agriculture), but also strong bias in

the LAI magnitude. It is most pronounced over dry areas in the southern part of the modelling domain, in line with results of Li

et al. (2022), who also found an overestimation of LAI by Noah-MP’s dynamic vegetation model with respect to MODIS LAI

in this area. Noah-MP is not unique in this respect, studies with other LSMs have also found model deficiencies in dry regions

(Dahlin et al., 2015; MacBean et al., 2015; Fox et al., 2018; Mahmud et al., 2021).445

The bias-blind LAI DA therefore has a strong impact on the vegetation model state and fluxes. Where LAI bias is large,

the bias-blind DA induces strong changes in GPP magnitude, which are mostly reducing RMSD with FluxSat, in agreement

with results found by Kumar et al. (2019b) and Albergel et al. (2020) for similar GPP reference datasets. Anomaly correlation
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improvement for FluxSat and SIF differs, but both show generally a positive impact. The difference might be due to the

dependence of both the assimilated LAI observations and the FluxSat GPP retrievals on reflectances from optical satellite450

sensors, which might inflate anomaly correlations.

The strong impacts of the bias-blind DA also propagate to the model hydrology. Results for ET estimates are mixed: RMSD

and Ranom with GLEAM generally improve, especially over Turkey, the western Iberian Peninsula, and agricultural regions,

but R deteriorates over most of the domain. In contrast, runoff estimates improve compared to the GRDC discharge data.

Anomaly correlation with ESA CCI SM also improves over agricultural regions, but decreases over high-bias regions and455

northeastern Europe. However, in northeastern Europe the Noah-MP model-only SM estimates outperform ESA CCI SM when

comparing to in situ sites (Heyvaert et al., 2022, in review), probably due to the lower signal to noise ratio of soil moisture

retrievals over dense vegetation and organic soils (Gruber et al., 2019).

The large changes to the root-zone soil moisture climatology are hard to assess directly, because of the scale difference

between in-situ data and model grid cells. However, in strongly irrigated areas the change in soil moisture climatology leads to460

a decrease in soil moisture, even though the bad model performance originates from an underestimation of soil moisture due

to the lack of an irrigation process in the model. Joint updates of LAI and root zone soil moisture as done in LDAS-Monde

(Albergel et al., 2017) could alleviate this problem caused by “missing” water to some extent but requires a good estimation

of the coupling strength of LAI and soil moisture. The strong effect on the model hydrology might also be model-specific,

because the Noah-MP model hydrology is more sensitive to vegetation than other LSMs (Maertens et al., 2021).465

Even though our results for RMSD improvements in GPP and ET are similar to other studies (Kumar et al., 2019b; Albergel

et al., 2020), it is important to note that none of the reference products we used are free of bias. This can be due to assumptions

and errors in the underlying satellite data and retrieval algorithms in the case of satellite-based data, or due to different spatial

support in the case of in situ data. Hence, whether the bias-blind DA leads to estimates closer to the “truth” remains uncertain,

and evaluations with different reference products might come to different conclusions. We therefore additionally investigated470

effects of the DA on the model and on internal DA diagnostics.

4.2 Negative effects on optimality of DA system when ignoring bias

As an effect of "misusing" a Kalman filter for correcting biases instead of random errors, DA updates are strongly biased,

leading to non-optimal DA diagnostics and a pronounced sawtooth pattern. Such sawtooth patterns are common in filter DA

(e.g., Mitchell et al., 2002; Dee, 2005; Fox et al., 2018), but the strong preference for one direction and the model drift between475

two update steps harms estimates of other variables. GPP and ET are strongly reduced at the time of the DA update, and the

short term model forecasts directly after the DA update step show unphysical upward drifts.

The sawtooth pattern also poses the danger of introducing spurious trends, in case the observation frequency changes over

time (Dee, 2005). For example, if the availability of LAI observations at the Majadas site increased over time, the model would

be pulled more closely to the observations, i.e. lower LAI values in the later periods than in the early period, leading to an480

apparent decrease in LAI. Due to the strong impact of LAI changes on soil moisture, this would also lead to a spurious wetting

trend in the deeper soil layers. Such artificial trends can seriously confound trends in the resulting dataset.
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The sawtooth pattern has also been reported by other LAI DA studies using Noah-MP (Kumar et al., 2019b; Mocko et al.,

2021), and might be a problem specific to the Noah-MP vegetation model. It indicates that the model has an equilibrium LAI

that is largely independent of the current model state, to which it tries to return after each DA update.485

4.3 Effects of bias-aware DA

Using rescaling techniques for a priori bias correction comes at the cost of foregoing improvements in ET, runoff, and GPP.

However, the rescaling techniques retain improvements of GPP anomaly correlation and limit the side effects of the LAI DA

on model hydrology. The CDF-matching performs better for GPP anomalies over central Europe and for ET over the high-bias

regions, since it preserves more information on the shape of the observed seasonal cycle of LAI. But due to its larger impact on490

ET compared to the seasonal rescaling it also changes the soil moisture climatology in deeper layers, and leads to a decrease

in anomaly correlation with in situ soil moisture, especially for deeper layers. The seasonal rescaling has a better performance

for GPP anomalies over the high-bias regions when using FluxSat GPP as reference, but not with SIF, which may indicate an

overestimation in skill as discussed above. Overall, the seasonal rescaling minimises the DA effects on the model hydrology.

Since the bias-aware DA limits the DA to address only the random error components, filter diagnostics are more in line with495

standard assumptions (Desroziers et al., 2005). This facilitates a further reduction of the variance and autocorrelation of the

normalised innovations to obtain an optimal filter configuration by tuning the model and observation perturbations.

The limited DA impacts and more well-behaved filter performance could be especially helpful when assimilating multiple

datasets, because contrasting biases could deteriorate the ability of the DA system to find a good compromise between multiple

observations and model predictions (MacBean et al., 2016). This might for example arise if variables that require more complex500

observation operators are assimilated, and the observation operator is calibrated to the original model climatology.

4.4 Alternatives to rescaling of observations

As an alternative to rescaling, which aims to bring the observation climatology close to the model climatology, calibration or

model structural changes can bring the model climatology close to the climatology of the observations.

The vegetation model in Noah-MP consists of two parts: a photosynthesis model, which calculates how much carbon is505

assimilated from the atmosphere in each time step, and the dynamic vegetation model, which distributes the carbon to different

plant carbon pools and calculates losses due to respiration and turnover. Previous studies found that the dynamic leaf model

decreases performance compared to a prescribed LAI (Ma et al., 2017; Erlingis et al., 2021; Huang et al., 2022). Structural

changes in the equations governing the leaf carbon assimilation might therefore improve the agreement of modelled and

observed LAI.510

A promising candidate for structural changes is the leaf carbon allocation function, which governs which fraction of the pho-

tosynthesis carbon is allocated to the leaves. In Noah-MP v4.0.1, this function decreases from 1 at LAI=0 to 0 at approximately

LAI=6 with a sigmoidal-like shape. Alternative formulations have been tested by Gim et al. (2017) and Niu et al. (2020). They

used sigmoidal functions with a sharp decline around a threshold LAI. This sharp decline would likely worsen the issue of the

sawtooth pattern, since it increases model drift towards the equilibrium, i.e., the threshold LAI. But when treating this threshold515
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as a model parameter, these formulations open up new possibilities for calibration and parameter data assimilation, since the

threshold LAI gives a more direct access to adapting the maximum LAI reached in summer. Multi-pass schemes that update

the threshold based on observations, similar to Xu et al. (2021), might be able to improve the persistence of observations and

alleviate the sawtooth pattern issue.

Another shortcoming of Noah-MP is its oversimplified phenology scheme, which is solely based on a land cover-specific520

canopy temperature threshold, ignoring other drivers of phenology like day length or water availability (e.g., Dahlin et al.,

2015, 2017), or cumulative temperature effects often expressed via growing degree days (e.g., in CLM, Lawrence et al.,

2011). Especially in the southern part of our modelling domain, where water partly limits vegetation growth (Hashimoto et al.,

2019), more complex phenology schemes might improve the realism of the vegetation simulations. In the current scheme, the

temperature threshold is almost always exceeded, leading to unrealistically long growing seasons. However, additional degrees525

of freedom introduced by a more complex phenology scheme can also deteriorate model predictions (Lawrence et al., 2011).

An alternative to model structural changes is calibration, which has been successful at improving vegetation models in

previous studies (MacBean et al., 2015, 2016; Scholze et al., 2019; Forkel et al., 2019; Kolassa et al., 2020; Mahmud et al.,

2021). In the version of the Noah-MP model that we used, the specific leaf biomass, and parameters related to leaf respiration

and turnover can be tuned to modify the maximum summer LAI and thereby improve the agreement with the observations.530

Another option is adapting the temperature threshold used in the phenology scheme for each model grid cell separately. A

spatially variable temperature threshold could serve as a proxy for day length in the phenology scheme.

Our study demonstrates that a parameter calibration that changes model LAI can strongly affect the model hydrology, as

the impacts will be similar to the impacts of the bias-blind DA. These impacts might improve flux estimates, but it is unclear

whether the large changes in the soil moisture climatology in deeper soil moisture layers are desirable. Parameters related535

to transpiration, (e.g., minimum stomatal resistance as recommended by Boussetta et al., 2013) could be adapted to limit the

impact on the model hydrology. Using additional data, for example, soil moisture retrievals, can be helpful in constraining the

model hydrology in this case.

The calibration can either be done as a separate step before the state update DA or can be incorporated into a joint parameter

and state update DA scheme. An EnKF (as used in this study) can in principle be used for the joint updates by augmenting540

the control vector to contain both state variables and parameters (Evensen, 2009). If the model predictions’ dependency on the

parameters is highly nonlinear, particle methods might be more suitable (Frei and Künsch, 2013; van Leeuwen et al., 2019).

Hybrid methods that combine the EnKF with particle methods could be used to obtain a DA system that performs well both

for state updates and parameter updates (Frei and Künsch, 2013; van Leeuwen et al., 2019; De Lannoy et al., 2022).

5 Conclusions545

So far, satellite LAI DA studies have mostly ignored biases between observed and modelled LAI. In this study, we evaluated

how the presence of bias in a LAI DA system can impact the model hydrology and carbon uptake. Specifically, we assimilated
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CGLS LAI into Noah-MP with an EnKF and we evaluated a bias-blind DA and two rescaling techniques, i.e. climatological

CDF-matching and seasonal rescaling of the first two moments, to account for the biases in the DA system.

To summarise, we recommend using rescaling techniques for LAI DA in the presence of strong biases550

– if the focus is not only on vegetation or the carbon cycle, but also on hydrological processes, because large LAI changes

can cause unphysical impacts on model hydrology;

– if multiple datasets with contrasting biases are assimilated, since the bias-blind DA can strongly change the model

climatology;

– if the DA aims at preparing the best analysis state for subsequent short-term predictions, because the abrupt update steps555

induce spurious short-term trends;

– if datasets with changes in observation frequency are used, because this can induce spurious long-term trends;

– if an optimal DA system in terms of Desrozier’s metrics (Desroziers et al., 2005) is desired, because bias-blind DA

violates basic assumptions of the Kalman filter.

The CDF-matching technique preserves more information from the signal and leads to larger improvements in GPP and ET,560

but worse estimates of deeper layer soil moisture. The seasonal rescaling performs best in terms of internal DA diagnostics

and in limiting DA updates to improving the vegetation anomalies. The bias-aware LAI DA is suitable to provide physically

consistent short-term flux estimates for numerical weather prediction models or soil moisture monitoring, or a baseline to

merge historical earth observation records from multiple sensors to a long-term dataset without introducing artificial trends.

An alternative to bias-aware DA is an a priori model calibration or a joint parameter and state update DA, which would lead565

to model estimates of vegetation in the observation climatology, which is desirable for research on the carbon cycle. Further

research is needed to correctly simulate and optimise the coupling mechanisms between the water and carbon cycle to gain the

most benefit from subsequent data assimilation.
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